If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10c^2=5c
We move all terms to the left:
10c^2-(5c)=0
a = 10; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·10·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*10}=\frac{0}{20} =0 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*10}=\frac{10}{20} =1/2 $
| 2x+24=x+5x-2x | | 7X+19;x=14 | | 6r–2r+4r=60+4 | | n–21=47 | | 6v^2-6v=0 | | p-5÷4=2.75 | | 12x+54=9x-42 | | 12x+54=4x-42 | | (5x-4)(2x-3)=3 | | 50,000=p+p(.5)(20) | | 8−4s=s+13. | | (h+17)+(h+5)=180 | | 3z/7+8=6 | | 4x-55+x+12=180 | | 4x-55+x-12=180 | | r+0.77r=5.13 | | 2x-3=12,x | | 3z/10=7 | | 5x13=8-2x | | -3x-7=24 | | 3x^2+144x=0 | | 4(y+2)=26 | | x+11=42-(x+5) | | 4(-3t-18)=-9t-12 | | 4^4x-5=2^2x | | 6(4x-7)(6x+5)=0 | | 30-27=x | | 40.1=t^2 | | 49.1=t^2 | | (9/10)z-2=(-19/20)z+3 | | 5(3x-2)(2x+3)=0 | | 180=16y+25 |